Smart chip senses, stores, computes and secures data in one low-power platform

Smart chip - low-powered platform

By Mariah Chuprinski

Digital information is everywhere in the era of smart technology, where data is continuously generated by and communicated among cell phones, smart watches, cameras, smart speakers and other devices. Securing digital data on handheld devices requires massive amounts of energy, according to an interdisciplinary group of Penn State researchers, who warn that securing these devices from bad actors is becoming a greater concern than ever before.  

New type of semiconductor may advance low-energy electronics

By Jamie Oberdick

A research partnership between Penn State and the Massachusetts Institute of Technology (MIT) could enable an improved method to make a new type of semiconductor that is a few atoms thin and interacts with light in an unusual way. This new semiconductor could lead to new computing and communications technologies that use lower amounts of energy than current electronics. 

Laser Writing May Enable ‘Electronic Nose’ For Multi-Gas Sensor

By Ashley J. WennersHerron

Environmental sensors are a step closer to simultaneously sniffing out multiple gases that could indicate disease or pollution, thanks to a Penn State collaboration. Huanyu “Larry” Cheng, assistant professor of engineering science and mechanics in the College of Engineering, and Lauren Zarzar, assistant professor of chemistry in Eberly College of Science, and their teams combined laser writing and responsive sensor technologies to fabricate the first highly customizable microscale gas sensing devices.  

Extra Dimension Doubles Power Of Standalone Antenna System

By Mariah Chuprinski and Ashley WennersHerron

To become truly wireless, wearable technology has one more cord to cut: the charger. A Penn State-led team made the first slash, using asymmetric copper arches to develop a 3D antenna system that wirelessly harvests radio frequency energy and converts it to electrical energy to power itself and on-board sensors.   

Rubbery Camouflage Skin Exhibits Smart And Stretchy Behaviors

By Mary Fetzer

The skin of cephalopods, such as octopuses, squids and cuttlefish, is stretchy and smart, contributing to these creatures’ ability to sense and respond to their surroundings. A Penn State-led collaboration has harnessed these properties to create an artificial skin that mimics both the elasticity and the neurologic functions of cephalopod skin, with potential applications for neurorobotics, skin prosthetics, artificial organs and more.   

Scientists Devise Method To Help Prevent Hospital Infections

Assistant Professor Amir Sheikhi

On any given day, one in 31 hospital patients is diagnosed with an infection that developed as a result of care during their hospital stay, according to the Centers for Disease Control and Prevention. Medical devices such as catheters, stents, heart valves and pacemakers, whose surfaces can become covered with harmful bacterial films, account for about a quarter of such infections.