The “breathing”, or the vibrational motion of materials, contains rich information about the physical and chemical properties and states. Raman spectroscopy is a powerful analytical tool to see such “breathing”. In this talk, I will present some examples on how we can “see breathing” of 2D materials systems, including twisted bilayer MoS2 and few-layer black phosphorus, and how the “breathing” behaviors of coupled nanomaterials are influenced by each other which leads to new opportunities in chemical and biological sensing.

Sengxi Huang | Electrical Engineering

Animals move with remarkable agility and robustness, which is unparalleled by current physical (robot) systems. Major conceptual breakthroughs are needed to synthesize an engineering ‘blueprint’ of animal locomotion. Emphasizing the senses of touch and vision, I will draw on control tasks in running and flying insects to describe how animals implement feedback control. Throughout I will highlight opportunities for multidisciplinary collaborations at the intersection of material science, biomechanics, neurogenetics, mathematics and robotics.

Jean-Michel Mongeau | Mechanical and Nuclear Engineering

A traditional science classroom spends the first few weeks teaching students how scientists do their work and the rest of the class telling them what scientists already know. Current reforms in STEM education promote engaging students in the practices of researchers to make sense of disciplinary content. Since most K-12 teachers have little experience in research, this creates a serious challenge. However, teacher professional development workshops based on authentic research projects can build teachers capacity to teach in this way, and can serve as effective broader impacts programs for federally funded research grants.

Matthew Johnson | Center for Science and the Schools

The molecules of life, proteins and nucleic acids are essential parts of every living organism and participate in most processes within cells. Many proteins and some RNA are enzymes that catalyze a number of biochemical reactions. These macromolecules purified from different research labs across Penn State have been studied using a variety of biophysical techniques in our facility. The methods we employ include X-ray crystallography, solution small angle X-ray scattering (SAXS), dynamic light scattering, bio-layer interferometry, circular dichroism spectroscopy, micro electron diffraction, molecular modeling, isothermal calorimetry and differential scanning calorimetry. Come learn about some recent examples where the facility has assisted researchers in delineating the structure-function enigmas of various macromolecules.

Neela Yennawar | Huck Institutes of the Life Sciences

I will discuss our efforts in investigating molecular orientation at substrate and organic interfaces for the production of artificial “nanograss”. We developed a method for growing oriented single-crystal nanopillars at graphene interfaces for use in high performance organic solar cells. The use of organic single-crystalline devices will have a major impact in accelerating the emerging area of organic electronics, as these highly ordered systems will enable one to extract intrinsic charge carrier transport phenomena that cannot be accurately determined from disordered systems common to amorphous and/or polycrystalline films used in mainstream devices.

Alejandro Briseno | Chemistry

We communicate in different ways: hand-shaking, texting, speaking, etc. We speak using different languages: English, Chinese, Spanish, etc., and many of us are bilingual or even multilingual. Living cells also communicate with others in their multicellular society. But are cells monolingual or multilingual? It has been long believed that cells only speak a biochemical language, wherein cells communicate through message-passing factors called morphogens. In this talk I will show compelling evidence that living cells also communicate in the language of mechanics. This bilingual cell communication leads to various fundamental biological functions in development and repair, and dysfunctions in disease and injury. To better understand these phenomena requires multidisciplinary collaborations among mechanicians, chemists, materials scientists, and biologists.