Citric acid, naturally occurred in citrus fruits, is also known as an intermediate for cellular energy production in the Krebs cycle. Leveraging the multifunctional nature of citrate in chemistry and inspired by its important biological roles in human tissues, a class of highly versatile and functional citrate-based biomaterials has been developed. In this presentation, a methodology for the design of biomimetic citrate biomaterials and their applications in regenerative engineering, drug delivery, bioimaging and biosensing will be discussed.

Earth’s Critical Zone is the thin near-surface zone spanning from bedrock to the atmospheric boundary layer.  Since the mid-2000s, scientists have been viewing this zone through a new interdisciplinary lens that brings together biology, soil science, geology, hydrology, and meteorology to make co-located measurements of water, energy, sediment and solute fluxes.    NSF now funds a network of Critical Zone Observatories, one of which is led by a Penn State team. I’ll describe the key questions and ongoing research of our local Critical Zone Observatory, including the unmet demand for robust field sensors to monitor soil processes, and our attempts to move from measuring everything everywhere to measuring only what we need to model the Critical Zone.

Jason Kaye | Ecosystems Science and Management

The iSuperSEED team of the Center for Nanoscale Science (Penn State MRSEC) pursues compelling new research opportunities in applying Rules of Life principles to adapt the highly-sophisticated synthesis and assembly machinery of living systems to the production of new symmetry-enabled functional materials that cannot be synthesized or fabricated through conventional engineering methods. The research team will leverage plant biology research of the DOE-funded Center for Lignocellulose Structure and Formation (CLSF), which seeks a deeper understanding of the plant cell wall, in part by adapting methods of materials research in service of biology to conversely induce biological systems to create new materials.  As an initial step, the team will utilize genotype and extracellular environment to control the structure, composition, and crystalline order of cellulose across length scales in search of new modes of symmetry-enabled materials response such as piezoelectricity, ferroelectricity, and electro-optic effects.

Photonics has provided the basic platform to test many fundamental theories of contemporary physics and to build novel technologies utilizing them. In this talk, I will discuss examples of how concepts such as entanglement, entangled networks and Parity-Time-symmetry can be realized in simple optical setups, highlight some of the unanswered questions, and how collaboration among different disciplines (e.g., optics, materials science, physics and engineering, etc) can provide new insights towards scalable and feasible quantum photonic networks as well as high-performance optical devices and systems.

In collaboration with the Medina Group are examining fundamental roles of glycoproteins in cancer cell biology facilitated by a newly discovered glycan-binding protein (Lectin-1) that kills epithelial cancer cells with unprecedented potency (picomolar concentration). Utilizing chemical biology, evolution, genomics and cancer biology, we are studying the affinity and specificity of this new anti-tumor lectin, as well as selected candidates from a library of novel lectins, toward cancer-associated glycans and characterizing mechanisms of their cytotoxic action.

Jim Marden | Biology / Biomedical Engineering, Scott Medina | Biology / Biomedical Engineering

Since 2011 the Morombe Archaeological Project has undertaken archaeological survey, excavation and oral history recording in the Velondriake Marine Protected Area of southwest Madagascar. The project’s aims are to investigate diachronic human-environment dynamics and refine our understanding of the region’s settlement history by leveraging multiple scientific techniques and the collective historical and socio-ecological knowledge base of Velondriake’s living communities. In this presentation I describe the outcomes of the project’s approach to integrate diverse community members and collective knowledge in all aspects of the research and promote this approach as necessary for understanding the region’s rapidly shifting landscapes.

Kristina Douglass | Penn State Department of Anthropology & Institutes of Energy and the Environment