Atom-scale stencil patterns help nanoparticles take new shapes, learn new tricks

UNIVERSITY PARK, Pa. — Inspired by an artist’s stencils, researchers have developed atomic-level precision patterning on nanoparticle surfaces, allowing them to “paint” gold nanoparticles with polymers, or long chains of small molecules, to give them an array of new shapes and functions. The “patchy nanoparticles” developed by a multi-institutional team that includes researchers at Penn State can be made in large batches, used for a variety of electronic, optical or biomedical applications, or used as building blocks for new complex materials and metamaterials.   

Shedding light on materials in the physical, biological sciences

Materials scientists can learn a lot about a sample material by shooting lasers at it. With nonlinear optical microscopy — a specialized imaging technique that looks for a change in the color of intense laser light — researchers can collect data on how the light interacts with the sample and, through time-consuming and sometimes expensive analyses, characterize the material’s structure and other properties. Now, researchers at Penn State have developed a computational framework that can interpret the nonlinear optical microscopy images to characterize the material in microscopic detail.