Packaging is a huge part of the semiconductor puzzle, and Penn State has answers

chip packaging

The big news around semiconductors, the factor that drove the CHIPS for America Act, was and is the supply chain. Many in the media focused on the shortages and disruption in the chips supply chain that was caused by the pandemic, and in turn, created big increases in the price of things like automobiles. But there is also another big deal happening with semiconductors that does not get as much attention – packaging.

Growing tomorrow’s semiconductor chips in the materials garden

terrones holds a sampl

In some ways, Mauricio Terrones is a gardener. An Evan Pugh University Professor and The Penn State Verne M. Willaman Professor of Physics, Terrones does not grow flowers or vegetables, but instead, one- or few-atom-thick two-dimensional (2D) materials. Specifically, creating materials with specific properties. The first 2D material ever created was graphene, and Terrones was a pioneer in developing 2D materials beyond graphene such as molybdenum disulfide (MoS2) and Tungsten disulfide (WS2). These are layered 2D materials, monolayered, bi-layered, tri-layered or more.

Potential university partners share their vision of a regional semiconductor hub

Semiconductor

By Jamie Oberdick

As outlined in the CHIPS and Science Act, regional hubs would play a key role in an American semiconductor future.

Part of what will help make the CHIPS and Science Act a success is the concept of regional hubs, where partnerships among industry, government, and universities like Penn State will thrive. Penn State brings a lot of semiconductor expertise to the table, but what about potential university partners in the region? What would a joint university partnership look like?