Tiny bubbles could reveal immune cell secrets and improve treatments
Penn State researchers develop novel bubble-based technique to watch immune cells at work
By Jamie Oberdick
Penn State researchers develop novel bubble-based technique to watch immune cells at work
By Jamie Oberdick
By Mariah R. Lucas
The ability to regenerate and pattern blood vessels, the literal lifelines extending deep into soft tissues, remains an elusive milestone in regenerative medicine. Known as tissue revascularization, stimulating blood vessel growth and pattern formation in damaged or diseased tissues could accelerate the field of regenerative medicine, according to Penn State researchers.
By Sarah Small
Acoustic waves may be able to control how particles sort themselves. While researchers have been able to separate particles based on their shape — for example, bacteria from other cells — for years, the ability to control their movement has remained a largely unsolved problem, until now. Using ultrasound technology and a nozzle, Penn State researchers have separated, controlled and ejected different particles based on their shape and various properties.
By Jennifer Matthews
Researchers at Penn State are designing a new wireless rechargeable battery for biomedical electronics, such as cardiac pacemakers, that will allow them to be charged and managed without the need for invasive surgery.
By Sarah Small
UNIVERSITY PARK, Pa. — For wearable electronics to live up to their promise for health care monitoring, they need to do at least two things: transform from rigid to soft to accommodate changing structural needs, and heal their own normal wear-and-tear. With the help of liquid metal and specialized polymers, researchers have developed sensors that can do both.
By Ashley WennersHerron
UNIVERSITY PARK, Pa. — For mere dollars, a Penn State-led international collaboration has fabricated a self-powered, standalone sensor system capable of monitoring gas molecules in the environment or in human breath. The system combines nanogenerators with micro-supercapacitors to harvest and story energy generated by human movement.
By Mariah R. Lucas
UNIVERSITY PARK, Pa. — Neurons, which are responsible for producing the signals that ultimately trigger an action like talking or moving a muscle, are built and maintained by classes of motor proteins that transport molecular cargo along elongated tracks called microtubules. A Penn State-led team of researchers uncovered how two main groups of motor proteins compete to transport cargo in opposite directions between the cell body and the synapse in neurons.
Editor’s note: A version of this press release appeared on The University of Texas at Austin’s site.
By Mary Fetzer
By Adrienne Berard
UNIVERSITY PARK, Pa. — Waaahhh! While babies have a natural mechanism for alerting their parents that they need a diaper change, a new sensor developed by researchers at Penn State could help workers in daycares, hospitals and other settings provide more immediate care to their charges.
By Mary Fetzer
UNIVERSITY PARK, Pa. — A soldier suffers a serious gunshot wound on a remote battlefield or a machinist has a work accident and gets stuck in traffic on the way to the hospital. Secondary, uncontrolled bleeding from traumatic injury is the leading cause of death of Americans from ages one to 46.