Shining a light on molecules: L-shaped metamaterials can control light direction

Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves — until now.

Researchers uncover mechanisms to easily dry, redisperse cellulose nanocrystals

Man and two women in a lab readying a sample of cellulose

By Maria R. Lucas

UNIVERSITY PARK, Pa. — Cellulose nanocrystals — bio-based nanomaterials derived from natural resources such as plant cellulose — are valuable for their use in water treatment, packaging, tissue engineering, electronics, antibacterial coatings and much more. Though the materials provide a sustainable alternative to non-bio-based materials, transporting them in liquid taxes industrial infrastructures and leads to environmental impacts.

Penn State leads semiconductor packaging, heterogeneous integration center (JUMP 2.0)

Image of a semiconductor chip in a motherboard

By Ashley WennersHerron

UNIVERSITY PARK, Pa. — The Semiconductor Research Corporation (SRC)’s Joint University Microelectronics Program 2.0 (JUMP 2.0), a consortium of industrial partners in cooperation with the Defense Advanced Research Projects Agency (DARPA), has announced the creation of a $32.7 million, Penn State-led Center for Heterogeneous Integration of Micro Electronic Systems (CHIMES).

Smart chip senses, stores, computes and secures data in one low-power platform

Smart chip - low-powered platform

By Mariah Chuprinski

Digital information is everywhere in the era of smart technology, where data is continuously generated by and communicated among cell phones, smart watches, cameras, smart speakers and other devices. Securing digital data on handheld devices requires massive amounts of energy, according to an interdisciplinary group of Penn State researchers, who warn that securing these devices from bad actors is becoming a greater concern than ever before.