The emerging field of quantum information technology exploits intricate quantum mechanical phenomena to create fundamentally new ways of obtaining and processing information. We are developing complex glass packaging to enable reliable access to quantum systems and materials from the macroscopic world without disturbing the quantum coherence of these delicate objects.
Researchers led by Penn State and the University of California, San Diego have discovered a new ‘knob’ to control the magnetic behavior of one promising quantum material, and the findings could pave the way toward novel, efficient and ultra-fast devices.
A team of physicists at Penn State and the University of Wurzburg in Germany led by Cui-Zu Chang, an assistant professor of physics at Penn State, studied over three dozen devices similar to the one used to produce the angel particle in the 2017 report. They found that the feature that was claimed to be the manifestation of the angel particle was unlikely to be induced by the existence of the angel particle. A paper describing the research appears on Jan. 3 in the journal Science.
Reduced entropy in a three-dimensional lattice of super-cooled, laser-trapped atoms could help speed progress toward creating quantum computers. A team of researchers at Penn State can rearrange a randomly distributed array of atoms into neatly organized blocks, thus performing the function of a “Maxwell’s demon” — a thought experiment from the 1870s that challenged the second law of thermodynamics.