Morphology evolution in spinel manganite films deposited from an aqueous solution

Author(s): S.W. Ko¹; J. Li¹; S. Trolier-McKinstry^{1,2}

Source: THIN SOLID FILMS **Volume:** 522 **Pages:** 129-135 **DOI:** 10.1016/j.tsf.2012.08.047 **Published:** NOV 1 2012

Conference: EMRS Symposium Q on Engineering of Wide Bandgap Semiconductor Materials for Energy Saving Location: Nice, FRANCE Date: JUN, 2011

Sponsor(s): European Mat Res Soc (EMRS)

Abstract: Spinel manganite films were deposited by the spin spray technique at low deposition temperatures (<100 degrees C). It was found that the film microstructure depends strongly on the degree of supersaturation (S) of the cations in the aqueous solution. For S<2, well-crystallized isolated particles were deposited on the substrate, suggesting that heterogeneous nucleation with a low nucleation density dominates under these conditions. For 10<S<200, the as-grown films were continuous, with some porosity confirmed by transmission electron microscopy (TEM); the films could be densified by post-deposition annealing at 400 degrees C for 1 h. As-deposited films under these conditions were X-ray amorphous but the nanocrystalline spinel phase was confirmed by TEM. In this region, both homogeneous and heterogeneous nucleation occur. For S>1000, agglomeration of small particles was dominant, which suggests that homogeneous nucleation is dominant during deposition. Heterogeneous nucleation was critical to obtain dense films. (C) 2012 Elsevier B.V. All rights reserved.

Addresses:

1. Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA

2. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA

E-mail Address: ksw741@gmail.com

Publisher: ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND