Si-compatible candidates for high-*k* dielectrics with the *Pbnm* perovskite structure

Sinisa Coh^{1,*}, Tassilo Heeg², J. H. Haeni³, M. D. Biegalski⁴, J. Lettieri^{3,†}, L. F. Edge³, K. E. O'Brien³, M. Bernhagen⁵, P. Reiche⁵, R. Uecker⁵, S. Trolier-McKinstry³, Darrell G. Schlom², and David Vanderbilt¹

¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

²Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

³Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁴Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

⁵Leibniz Institute for Crystal Growth, Max-Born-Straße 2, Adlershof, D-12489 Berlin, Germany

Received 26 April 2010; published 3 August 2010

We analyze both experimentally (where possible) and theoretically from first principles the dielectric tensor components and crystal structure of five classes of *Pbnm* perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high- κ dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared active. We find that CaZrO₃, SrZrO₃, LaHoO₃, and LaYO₃ are among the most promising candidates for high- κ dielectrics among the compounds we considered.

© 2010 The American Physical Society

URL: http://link.aps.org/doi/10.1103/PhysRevB.82.064101 DOI: 10.1103/PhysRevB.82.064101 PACS: 77.22.-d, 77.55.df, 85.50.-n

*sinisa@physics.rutgers.edu

[†]Deceased.